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ABSTRACT
The modern problem of real-time resource management to increase enterprise efficiency is considered.

A new look at the dynamic self-organizing processes based on multi-agent technologies in building and 
revising schedules by events in real time is suggested. Schedule is considered as a flexible network of opera-
tions of demand and resource agents. This schedule is formed during the interactions of basic agent classes that 
set and break the dynamic links between each other, depending on the events and changing situation in the real 
world.

A thermodynamic model of demand–resource network (DRN) dynamics is introduced. There is a similarity 
to Ilya Prigogine’s non-linear thermodynamics theory which allows us to explain the phenomenon of unstable 
equilibrium emergence, order and chaos, catastrophes, bifurcations and other non-linear events that are signifi-
cant to the self-organizing processes control in multi-agent systems (MASs).
Keywords: adaptability, chaos and order, complex systems, demand–resource network, multi-agent technology, 
network dynamics model, non-equilibrium, real-time scheduling, self-organizing.

1 INTRODUCTION
Global economy’s complexity is well known nowadays, which is often driven by uncertainty and 
dynamics in demand and supply.

Under these circumstances, the more operative, flexible and efficient approaches to the decision-
making for resources allocation, scheduling, optimization, coordination and control are needed. 
These approaches allow the enterprises to maintain their profitability by avoiding equipment down-
time or shortages of all kinds of resources, including personnel, equipment, finance and others. 
Therefore, the idea of a ‘real-time smart enterprise’ is discussed more and more often. These enter-
prises will have ‘on-the-fly’ dynamic resources scheduling in real time, since decisions’ quality and 
efficiency directly depend on the moment of time itself. Moreover, in the conditions of today’s 
competitive environment, delayed decisions lead to the losses.

A new approach to scheduling is suggested in this paper. In this approach, resources schedule is 
not a static data structure that is created only once and becomes outdated immediately, but it is 
considered as a dynamic self-organized data structure that adaptively changes. Unlike our earlier 
papers dedicated to the DRN creation for adaptive intelligent resource scheduling system based on 
the multi-agent technologies [1,2], in this paper we suggest and justify a new ‘thermodynamic’ 
interpretation of self-organization processes of scheduling that shows a deep analogy of these pro-
cesses to the non-linear thermodynamics suggested by Prigogine and Stengers [3] and Prigogine 
and  Nicolis [4].

There is a gap between the existing solutions built based on the combinatorial method and sched-
uling tools [5], where we need to know all the orders and resources beforehand. Traditional systems 
implement batch versions of linear or dynamic programming, constraint programming and other 
methods based on combinatorial search of options [6,7], which in practice turn out to be unsuitable. 
In contrast with the classical large, centralized, monolithic and sequential programs, multi-agent 
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systems (MASs) are built as distributed communities of small autonomous software objects working 
asynchronously but in a coordinated way to obtain the results.

Multi-agent technology is considered as a new paradigm for solving complex problems that are 
difficult or even impossible to solve by classical mathematical methods or algorithms [8], for exam-
ple, in scheduling and optimization, pattern recognition, text understanding and some other domains. 
This paradigm is considered as one of the most innovative and efficient for real-time scheduling of 
resources ‘on the fly’ [9,10].

In this paper, we will consider the basic concepts of the approach and show its applications as well 
as a direct link with models of thermodynamics.

2 DEVELOPMENT OF THE CONCEPT OF DRN
The concept of DRN was suggested in our early papers on multi-agent approach. This concept was 
successfully applied in the creation of a gallery of adaptive real-time schedulers [1,2,7].

The DRN model is based on a ‘holonic’ approach to the production systems creation [11] where 
specific classes of agents are introduced.

As a part of the holonic approach in the DRN, we introduce demand and supply agents. These 
agents can act as sub-agents (assistants) to the main agents listed above, allowing them to concur-
rently or asynchronously search for each other on the virtual market, performing a continuous 
matching (Table 1).

A constant matching between the competing and cooperating demand and supply agents on the 
system’s virtual market allows to build a solution to any complex problem as a dynamic network of 
connections between tasks (operations) that is easily modified in real time.

In the DRN concept, any physical or abstract entity agent of problem domain can create agents of 
demand or resources. As a result, the schedule can be formed as a kind of requirement-driven net-
work of operations, which can be easily adapted by events in real time [1,2].

Continuous improvement of the system key performance indicators is based on the compensation 
method, where agents, whose condition became worse, receive compensation in the form of virtual 
money from agents that improved their schedule.

Specific DRN-based methods and tools were developed to design adaptive MASs for real-time 
scheduling [12].

2.1 Thermodynamic DRN scheduling model

Even a small organization schedule is a much more complex and dynamic object than it may seem 
at first glance because self-organizing processes that are similar to the ones described in Ilya 
Prigogine’s writings began to play an increasing part in scheduling in our systems.

In general terms, it is suggested to consider the schedule of a complex system as ‘unstable equi-
libriums’, which differ in strength in different directions. A new order brings in money that plays the 
part of the systems energy. Order and chaos phenomena, autocatalytic reactions, oscillations and 
other non-linear events arise in the system. If the conflicts resolution and the number of messages in 
the system increase, we can assume that the temperature of the schedule section is increasing as 
well. Number of messages related to number of nodes plays the role of the system temperature. To 
support the structure of schedule, agents are paying some taxes that dissipate part of the input 
energy.

If orders stop coming in, this schedule will begin to gradually disintegrate in some time, from the 
weakest links between agents to the system transition to a state of complete chaos with zero energy, 
and cool down completely.
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2.2 Satisfaction and formal problem statement description

The formalized problem statement is based on searching for a consensus between agents in DRN 
virtual market and can be formulated as follows.

Let us assume that all agents of demands and supply have their own goals, criteria, preferences and 
constraints (e.g. due date, cost, risk, priority, required equipment type or worker qualification). The 
importance of each criterion can be represented by weight coefficients in a linear combination of 
criteria for the given situation in scheduling, but can change during the schedule forming or  execution.

Table 1: Main classes of agents.

Agent class
Specification of agent behavior, main 
goals and tasks Attributes

Order agent The goal of the order agent is to complete 
the order in time with maximum quality, 
minimal cost, best delivery time and 
minimum risk. Creates operation agents 
corresponding to the technological 
operations or business processes 

Defines service level, real and 
virtual money balance for order 
execution, given the specifications 
for resources, operations 
interdependencies, deadline for 
order execution, risks

Product  
(result) agent

The goal is to get the best result to match 
order specifications and requirements

Domain-specific product 
requirements which are specified in 
order

Resource 
agent

The goal is to maximize resource 
workload, get the best orders, tightly 
schedule the executed operations or 
provide continuous operation and 
specified requirement execution

Availability at any moment of time, 
scale of charges of usage, working 
capacity and maintenance, efficiency

Operation 
agent

Coordinates performance of specific 
technological operations and business 
processes, their scheduling on resources, 
searches for the best resources for 
execution, negotiates about sub-tasks 
allocation, proactively improves the 
situation in the schedule

Preferable and real allocation time, 
virtual and real accounts, current 
penalties and bonuses, processes and 
operations deadline

Staff agent
Or enterprise 
agent

Controls enterprise key performance 
indicators and balance workload of the 
resources, discovers the ‘bottlenecks’ in 
the schedule and generates overcoming 
strategies, seeks to increase profit and 
other specified indicators

List of available resources, 
preferences and constraints for this 
task or organization

Demand 
agent

Allows to find a supply (resource) by 
the requirement, using requirements 
specification

List of situational matching 
parameters

Supply agent Allows to find a demand by the 
requirement, using requirements 
specification

List of situational matching 
parameters
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Let us introduce the satisfaction function for each agent (Fig. 1a), which will show deviation of 
the current value of this function from the given ideal value by any of the criteria for the current step 
of finding scheduling solution for this agent. The activity of agents also depends on bonus/penalty 
function and current budget allocated on specific accounts for virtual money (Fig. 1b).

Let each demand j has several individual criteria xi and suggested ideal values xij
id. For each agent 

of demand j, a normalized bonus/penalty function is calculated by component I, given, for example, 
as a linear function fij

task(xi − xij
id). In most cases,  this function has a bell form with maximum in the 

point of suggested ideal value. After that, a satisfaction value for each task agent and each criterion 
i with the given weight coefficients aij

task task is estimated.
By the proper selection of signs and form of the function, the goal of agent system can be refor-

mulated as maximizing of virtual value y j
task of demand j (upper index task means that the values 

belong to the demand agents):
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where ∀j weight coefficients are normalized: Σi aij
task = 1.

Similarly, the problem of finding the states xij
* of agents of demands j that maximize the total value 

of all orders can be formulated:
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where  bj
task is demand weight that allows to set and dynamically change the priorities showing the 

importance of criteria.
Similarly, the value function can be given for the supply by criteria zk, with bonus/penalty function 

fkl
res(zk − zkl

id), weight aki
res

 of criterion k for resource l, and resource value bi
res for the system (which 

is similar for weight for demand agents function):
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Figure 1: Example of (a) satisfaction function and (b) bonus/penalty function.

(a) (b)
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Variables x and z belong to some areas of the space of criteria for demands and supply, I and K are 
dimensions of the corresponding criteria spaces, and upper index res means that the values belong to 
resource agents.

Thus, in DRN, the optimization problem is formulated as solving eqns (2)–(4).
In other words, in the suggested bottom-up methodology, one global optimizer is replaced by 

many small local optimizers which are able to negotiate and find trade-offs when they search their 
local optimums.

The process of computations will be stopped and solution of problem will be delivered when 
consensus between agents is found.

2.3 DRN dynamics

Fundamental principles that form the basis of a new thermodynamic model of a DRN are the follow-
ing:

• Each of our systems is open, which means that new orders and resources arrive at any moment 
of time, causing new agents’ appearance and changes in the internal configuration of the connec-
tions between them in the system.

• Each new order brings real money into the system that plays the part of ‘energy’ required for 
the support of agents’ activity (dynamics) and reconnection (statics), and part of this energy dis-
sipates (stored in the system).

• Each agent is given a satisfactory function as its objective function, which shows how close the 
agent is to the specified ideal values by a certain criterion or their convolution, to which the agent 
converges.

• The further the agent is from the ideal value, the greater is the agent’s ‘aspiration’ to achieve the 
results, the more active is an unsatisfied agent and the less active is a satisfied agent. This  allows 
to control agents’ internal activity in the system, which is particularly required for complex 
schedules design with hundreds of thousands agents.

• Agents are awarded if their state improves toward the set goal and get penalties otherwise. For 
that purpose, a special microeconomics of considered systems, where agents receive virtual cur-
rency and pay for a position in the schedule, changes in schedule or communication with other 
agents and taxes for the specified activity types. This is a dissipative part of the system.

• Each agent has a current virtual account and financial resources that are used by agents to  improve 
their local allocation in the schedule.

• Agents iteratively improve their criteria in order to reach the best values that are close to ideal, 
compensating other agents’ losses in concessions from their budget.

DRN model can be a powerful tool for self-organization processes’ description and research in 
MAS.

It is convenient to introduce the following concepts for new system phenomena description – 
 connectivity, connection strength and autonomy level [13].

The connectivity of agents denotes the degree to which an agent is connected to other agents in 
the system. The higher the connectivity of agents, the greater is complexity of the system.

The connectivity of agents can flexibly change during the computations and at first, it limits agent 
choices by the closest environment, but the local interaction area is gradually growing unless there 
is no better solution.
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In fact, it allows to control the speed and quality of a problem solution, increasing or reducing 
opportunities for self-organization in the system. Connection strength between agents denotes the 
mutual agent’s satisfaction of the connection and degree of breakability of connections.

Weaker connections are easier to break and make new connections. Obviously, connection strength 
between agents can be calculated as an average satisfaction with connection. That causes misbalance 
of connections and that increases complexity and, therefore, the unpredictability of global behavior. 
The weaker the inter-agent connection, the greater is complexity of the system. Similar to the 
 thermodynamics theory, the easier connections and, therefore, the more flexible the system is, the 
closer it is to the chaos and vice versa, with stronger connection between the agents system reaching 
a strict order state. Autonomy of agents denotes the degree of freedom given to them to decide what 
to do. The higher the autonomy of constituent agents, the greater is complexity of the system.

DRN model, topology and connection strength allow us to introduce order and chaos characteris-
tics in MAS.

Lesser the connections, more is the chaos, and the more the connections and their strength, the 
higher is order degree. A number of connections of one agent can be used for order degree evalua-
tion. Quantitative characteristics and their dynamics are the subject to our future investigations.

Demand agents establish links with resource agents using virtual money as payment for connec-
tion. If it is necessary, other agents’ deteriorations can also be compensated with virtual money. 
Therefore, virtual money in such processes represent the energy that agents can use to improve 
their states. After the rescheduling, agents have some money left and the proportion of free energy 
decreases. Over time, agents’ possibilities to change the schedule with compensations decrease, 
connection costs increase and their relevance in the sense of a positive impact on the degree of 
satisfaction of the system is lost. Staff agent can determine which of the connections only inflict 
losses and that it is energetically profitable to destroy them and plan the costly schedule parts. 
Therefore, some schedules ‘crush’ at some point.

New order arrival brings in free energy for the schedule changes. Schedules deterioration can be 
caused by the energy (virtual money) dissipation in the system. That corresponds with the open 
systems behavior in Prigogine’s thermodynamics.

The connectivity, connection strength and autonomy of agents provide an opportunity to consider 
the evolution of interacting agents in the DRN using thermodynamic description. This description is 
similar to the autocatalytic reactions’ description in complex multicomponent systems.

3 SELF-ORGANIZATION IN COMPLEX SYSTEMS
The general behavior of complex systems is composed of agents’ interactions, which in turn con-
strain their behavior. This behavior is called emergent, and it is unpredictable, but not chaotic. 
Emergency leads to the events associated with the dynamic rescheduling, as well as to the system 
adaptability to the impact of external influences.

3.1 Measuring adaptability of MASs

MAS receives orders that are scheduled for execution on resources. Incoming and previously distrib-
uted orders are dynamically reallocated to the system resources, since the agents tend to increase 
their satisfaction.

When a new order arrives and it is not distributed by the system yet, system satisfaction drops as 
the new agent cannot find the best allocation immediately. Over time, the overall satisfaction 
increases by rescheduling and gradual improvement of agents’ conditions. The system goes into a 
non-equilibrium state, and then the agents try to find new local balance. It is suggested to calculate 
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an average satisfaction for y tasks and resources agents depending on the time, in order to evaluate 
the dynamics of MAS:

 

y t
y t y t

M t N t
j j

task
I I

res

( )
( ) ( )

( ) ( )
,=

∑ +∑

+  
(5)

where yj
task is the task j agent satisfaction, yi

res the resource l agent satisfaction, and N(t) and M(t) are 
the number of task and resource agents correspondingly. The tasks come into the system and the 
resources can be turned on and off; therefore, their number depends on time.

Let us introduce a degree of adaptability γ of an MAS [14]. This degree characterizes the rate of 
local equilibrium recovery:

 
γ = − ⋅( ) ,y y

T2 1
1  (6)

where y1 is a minimum satisfaction value after the influence, y2 is average system agents’ satisfac-
tion after the MAS was influenced and T is the time of equilibrium recovery of the average 
satisfaction y2.

A similar effect of a partial recovery can be observed not only when the resources are turned off 
but also with the abrupt appearance of new task flows. The higher the degree of adaptability, the 
greater the ability to agents’ self-organization in elimination of disruptive influences is.

It is clear that MAS adaptability depends on the external influences intensity; for example, with 
the arrival of large task flows that exceed system productivity, the satisfaction decline will only grow 
with time, as the dissatisfaction increase of the arrived agents will not be covered by the partial 
growth due to rescheduling. Dynamics of the MAS satisfaction recovery during resources disabling 
in a time equal to 18 points are shown in Fig. 2.

After the average satisfaction maximum decrease to the y1 level at time T, MAS finds a new quasi-
equilibrium state y2. Dz = ymax − y2  is an irretrievably lost satisfaction. Similarly, we can consider 
task agents adaptability γ task and resources agents adaptability γ res.

Figure 2: Adaptive partial recovery of the characteristics of a real MAS.
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Therefore, DRN degree of adaptability can reflect the degree of ‘adaptive intelligence’ as a meas-
ure of agents’ self-organization.

3.2 State of unstable equilibrium and disaster

During their evolution, MASs discover specific events such us dynamic formation of non- 
equilibrium structures of different depths of inclusion and configuration (like formation of order 
from chaos) represented by spontaneous acceleration of agent negotiations, leading to a ‘construc-
tive destruction’ of a schedule in order to create a new schedule of higher quality. Spontaneous 
acceleration can occur without any apparent cause, akin to autocatalytic processes [4]. The accel-
eration usually leads to the accumulation of virtual money resulting in a kind of explosion or 
catastrophe (radical changes in the schedule). Let us consider this on the example of transport 
logistics problem in Fig. 3.

The scene depicts a community of several trucks, each in turn containing a community of journeys, 
each of which containing a community of cargoes. Each link between demands and resources is 
labeled with two figures denoting the perceived values of the link by both nodes connected by the link.

We can see that the order 1 is satisfied with the allocation of resources. Order 2 provides for less 
satisfied and not satisfied agents a new opportunity to improve their allocation. Many negotiation 
processes will begin which are proactively initiated by resources that aim to improve their  allocations. 

This increased activity of agents, sensing new opportunities combined with their dissatisfaction 
with the decision by the truck agent to accept new cargoes and create new journeys, may result in a 
ripple effect of changes to the schedule, accelerating the rate of change and causing a full collapse 
of the previously agreed schedule and its immediate re-building in a new manner. The schedule thus 
passes through a slowdown, accelerated activity, collapse into chaos and re-birth, a process known 
as ‘constructive destruction’.

3.3 Improving deteriorations

In cargo transportation simulation system [15], orders are executed with a possible delay (penalties); 
transportation cost of each truck per time unit is the same. Unavailability period is simulated for one 

Figure 3: An example of autocatalytic reactions in the scheduler.
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of the trucks (e.g. the truck is not taking orders). The simulation was performed to determine the total 
profit of the system, including penalties and empty runs of trucks to the orders loading points (Fig. 4).

The average profit decreased; however, in the 30-day period of unavailability, a 5% growth was 
observed, that is, ‘situation deterioration’ in this case led to more successful non-equilibrium state of 
the schedule, which is associated with a more profitable orders allocation to the remaining trucks. 
This phenomenon is similar to the well-known Braess’s paradox [16]. In our case, adding trucks’ 
working hours worsens the results and the introduction of restrictions improves it. In this case, add-
ing a new resource worsens the results and the introduction of restrictions improves it. A multi-agent 
cargo transportation system increased its profit at some time period with decreasing part of the 
resources by self-organization and rescheduling.

3.4 Loss of causality

The initial events that lead to the rescheduling activate order and resource agents. Branching net-
works of changes do not allow identifying an event or an agent that caused the changes. Therefore, 
in time, the agents forget in what stages if the rescheduling they were involved. Waves of disturbance 
in the system activate the branching processes that do not contain the initial information about the 
cause of changes.

There were from two to six rescheduling times during the simulation of the loading distribution 
on the executing elements even with a small number of tasks (Fig. 5).

Figure 4:  Transportation system total profit depending on the unavailability time of one of the 
trucks.

Figure 5: A bar chart of the system rescheduling (3 resources, 20 incoming tasks).
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4 CONCLUSIONS
Using the proposed DRN model, it will be possible to examine in detail in the future research the 
dynamics of self-organization processes, depending on the external incoming events, changes in the 
resources availability and operation in the condition of the changing microeconomics of agents 
 system.

Metrics for the complexity parameters evaluation of the DRN will allow to study the dependency 
of adaptive properties of agents’ self-organization from the dynamic structure of the network and to 
predict its response to external influences.

Dynamics model will provide an opportunity to study the processes of development and deteriora-
tion of the schedules over time as a phenomenon similar to the non-equilibrium thermodynamics.
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